top of page

Soil Mix Walls

Soil Mix Walls: Use - Construction - Test Strengths


Soil mix walls can be designed easily with DeepEX shoring design software. This section examines the use of soil mix walls in deep excavation design, as well as, the soil mix wall test strengths.


xsoil_mix_wall_excavation_deepex_model.png__800x0_q85_subsampling-2_upscale.jpg.pagespeed.ic.f38Xl_Q-63.webp

Figure: Cantilever Soil Mix Wall Designed with DeepEX software


Construction and use of soil mix walls:


Various methods of soil mixing, such as mechanical, hydraulic, with and without air, and combinations of both types have been used widely in Japan for about 20 years. Soil mixing has been used for many temporary and permanent deep excavation projects including the Central Artery project in Boston. Known methods include as Jet Grouting, Soil Mixing, Cement Deep Mixing (CDM), Soil Mixed Wall (SMW), Geo-Jet, Deep Soil Mixing, (DSM), Hydra-Mech, Dry Jet Mixing (DJM), and Lime Columns. Each of these methods aims at finding the most efficient and economical method to mix cement (or in some cases fly ash or lime) with soil and transform soil to become more like a soft rock.


Mechanical soil mixing is performed using single or multiple shafts of augers and mixing paddles. The auger is slowly rotated into the ground, typically at 10-20 rpm, and advanced at 2 to 5 ft (0.5 to 1.5 m) per minute.


Cement slurry is pumped through the hollow stem of the shaft(s) feeding out at the tip of the auger as the auger advances. Mixing paddles are arrayed along the shaft above the auger to provide mixing and blending of the slurry and soil. Slurry lubricates the tool and assists in the breaking up of the soil into smaller pieces. Spoils come to the surface since fluid volume is being introduced into the ground. These spoils comprise cement slurry and soil particles with similar cement content as what remains in the ground. After final depth is reached, the tools remain on the bottom of the hole, rotating for about 0.5 to 2 minutes for complete mixing. At this point, the tools are raised while continuing to pump slurry at a reduced rate. Withdrawal is typically at twice the speed of penetration, 4 ft to 10 ft (1 m to 3m) per minute.


Steel beams are typically inserted in the fresh mix to provide reinforcement for structural reasons. A continuous soil mix wall is constructed by overlapping adjacent soil mix elements. Soil mix sections are constructed in an alternating sequence with primary elements being formed first and secondary elements following once the first have gained sufficient strength.


The soil mix method can be very effective at providing very stiff and waterproof retaining systems. However, it is rather limited to medium and large-scale projects because of its high mobilization costs. Insufficient mix strength may result when mixing organic soils unless a high replacement ratio is maintained. Other issues such as difficulties in maintaining consistent compressive strengths throughout the section of a soil mix wall can also emerge.


Sol mix walls test strength:


The soil mix wall mass strength depends on the applied construction techniques, the insitu soils being mixed, and the cement replacement ratio. The cement replacement ratio refers to the percentage of insitu soil being replaced with cement. Higher replacement ratios typically end up in greater soil mass strengths.


When soil mix mass strengh is tested, the core sampling size plays an important role. Because the soil mix will never be uniform throughout the wall length, smaller samples tend to produce a greater variability on insitu strengths whereas increasing the sample size (within reason) will produce more consistent test strengths.


 

DeepEX Features

DeepEX Features


All software features and capabilities! Review all available design methods and analysis standards!



 

DeepEX Upgrades

DeepEX Upgrades


We continue our research and we introduce new unique features that extend the software capabilities!



 

Training

Training


Get professional training on DeepEX through videos, examples, webinars and online software presentations!



 

Cantilever Excavation - Soil Mix Walls LEM and NL Analysis


xmodel_20_cantilever_soil_mix_wall.jpg__600x0_q85_subsampling-2_upscale.jpg.pagespeed.ic.S_HcHZXw4-.webp


 

Presentations_DeepEX_Excavation with Rakers and heelblock.png

Need to Design a Soldier Pile Wall?


Book a FREE online presentation now!





 

DeepEX - Shoring Design Software

DeepEX - Shoring Design Software


DeepEX is the ultimate software program for design and analysis of Deep Excavations! Design any wall type and support system in the most efficient way!

  • Structural and Geotechnical Design

  • Modern Interactive Interface

  • Model Automatic Optimization

  • Export Reports and Sketches

  • Limit Equilibrium - Non-Linear - Finite Element Analysis

  • 2D Design Sections  - 3D Frame Analysis



 

DeepEx

DeepEx Demo


Structural and Geotechnical design of Deep Excavations.


Try the Full version for free and see how you can design and optimize any deep excavation model in the most efficient way!


Starting at

$ 3750



 

Web Presentation

Web Presentation


Get a Free online presentation! Learn about all software features and capabilities!



 

Purchase DeepEX

Purchase DeepEX


Get the most powerful shoring design software! Customize your version!



 

Software

Software


Review our software programs for geotechnical engineers and contractors!



 




SELECTED POSTS:

Check back soon
Once posts are published, you’ll see them here.
bottom of page